

Van Allen Probes observations of wave-particle interactions in the Earth's radiation belts

Seth G. Claudepierre, The Aerospace Corporation J. F. Fennell, J. B. Blake, T. P. O'Brien, I. R. Mann, J. L. Roeder, J. H. Clemmons, H. E. Spence, G. D. Reeves

Geospace Revisited 2014/09/15 seth@aero.org

© The Aerospace Corporation 2014

Outline

• ECT/MagEIS instrument description and status.

• Drift-resonance observations.

• Background corrected electron flux.

NASA Van Allen Probes Mission Radiation Belt Storm Probes Mission (RBSP)

- Launch on August 30th, 2012.
- Geotransfer orbit (GTO):

perigee ~ 700 km

apogee ~ 36000 km (~5.8 $\mathrm{R_{E}}).$

 Orbital period ~9 hours. Spacecraft lapping rate ~70 days.

Package	Measurement
ECT	electrons and ions (particles)
RPS	protons (particles)
RBSPICE	electrons and ions (particles)
EFW	electric and magnetic fields (waves)
EMFISIS	electric and magnetic fields (waves)

ECT MagEIS Instrument Magnetic Electron Ion Spectrometer

Mass	34.1* kg
Power	53* W
Average Telemetry Rate	9.5* kbps
Energy Range	20-4300 keV (electrons) 60-20000 keV (protons**)
Energy Resolution	<30% (electrons) <16% (protons)
Geometric Factor	$1.7x10^{-3} - 1.0x10^{-2} \text{ cm}^2 \text{ sr}$ (electrons) $4.1x10^{-4} - 2.4x10^{-3} \text{ cm}^2 \text{ sr}$ (protons)
Field-of-View	10° x 20° (electrons) 15° FW conical (protons)

*Total. MagEIS consists of 4 separate electron spectrometers per spacecraft (LOW, M35, M75, HIGH).

**The HIGH unit also has a proton telescope.

Electron energy

ECT MagEIS Instrument Status

- All 4 instruments on each spacecraft returning quality electron data over required energy range from 30 keV to 4 MeV.
- Proton telescope response degraded below 100 keV due to noise.
 - Increased leakage current from ion implant.
 - Began around 2013 March.
 - Will eventually move into higher energy proton channels.
- HIGH-A detector failure on 2013 Oct 02.
 - ~900 keV electron channel. MED units provide overlap/redundancy.
 - Evidence of gradual increase in noise over many months in detector likely caused by increase in reverse-bias leakage current.
 - Consequence is minimal.

Current operations:

- Operating LOW-A instrument in high rate mode every orbit (L=4 to apogee to L=4).
- Increased sectoring -> better pitch-angle resolution.
- Decreased the histogram accumulation time -> increased temporal resolution for background corrections.

seth@aero.org

proton telescope

electron spectrometer

ECT MagEIS Instrument Status

Outline

• ECT/MagEIS instrument description and status.

• Drift-resonance observations.

Background corrected electron flux.

Event Overview: 2012/10/31 Interplanetary Shock

Claudepierre et al. [2013] GRL

- Interplanetary shock impacted the magnetosphere at ~15:40 UTC on 2012/10/31.
- MagEIS subsequently observed monochromatic oscillations in electron flux:
 - Frequency ~ 5 mHz (T=3 mins).
 - Energy range ~ 20-400 keV.
 - Duration ~ 20 mins (~6 wave cycles).

Claudepierre et al. [2013] GRL

seth@aero.org

Drift-resonance

- Residual flux oscillations clearly show:
 - 1. Oscillation amplitude peak at ~60 keV.
 - 2. 180 degree phase change across the amplitude peak.
- This is the hallmark signature of a drift-resonant interaction between the electrons and magnetospheric ULF waves.
- The ULF wave is identified as the fundamental poloidal mode.

10

Claudepierre et al. [2013] GRL

Drift-resonance

- The drift period of a 60 keV, 90⁰ pitch-angle electron at L = 5.8 is $T_D = 133$ mins ($f_D = 0.125$ mHz).
- Thus, under the assumed driftresonance:

$$\omega = m\omega_D$$

with $f = 5.5 \text{ mHz}$
and $f_D = 0.125 \text{ mHz}$
 $\Rightarrow m = 44$

Claudepierre et al. [2013] GRL

Drift-resonance

- The two Van Allen Probes spacecraft are quite close to one another.
- Yet, they observe strikingly different environments, in terms of ULF waves and electron flux oscillations.
- This suggests that the drift-resonant interaction is highly localized in space.

Outline

ECT/MagEIS instrument description and status. •

Drift-resonance observations.

Background corrected electron flux.

Sources of background that we can correct for in the MagEIS electron data:

(1) Inner Belt Protons

- Contamination from ~300 MeV protons.
- L = ~1.0 to ~2.5.
- Produce background in all MagEIS electron channels.
- ~30-600 keV: Signal is measurable above the background.
- ~800-4000 keV: No signal. All background.

Electron energy

(2) Bremsstrahlung

- Contamination from ~5 MeV electrons.
- L = wherever there are ~5 MeV electrons.
- Produces background in low and medium energy MagEIS channels (30-900 keV).
- Signal is at times completely dominated by background.

Background Corrections: "Histogram" Data

Estimate Background at L=4.5, E=467 keV

Estimate Background at L=1.5, E=892 keV

Data will be available soon.

seth@aero.org

Data will be available soon.

Data will be available soon.

Conclusions

- MagEIS is returning clean electron measurements throughout the inner and outer zone.
- Electron flux fluctuation events (driftresonance, drift-echoes, flux-bursts) are commonplace in the MagEIS data set.
- Background corrected fluxes will be available soon.
- MagEIS/REPT electron intercalibration work is nearing completion.

We acknowledge the RBSP-ECT Science Team:

Special thanks to Jeremy Faden (autoplot.org).

seth@aero.org

Daniel Baker, Susan Baptiste, Bern Blake, Mary Bolton, Sebastien Bourdarie, Alex Boyd, Anthony Chan, Lujin Chen, Seth Claudepierre, Jim Clemmons, Alex Crew, Scot Elkington, Joe Fennell, Reiner Friedel, Herb Funsten, Jerry Goldstein, Janet Green, Michael Henderson, Richard Horne, Vaughn Hoxie, Chia-Lin Huang, Mary Hudson, Joerg-Micha Jahn, Vania Jordanova, Shri Kanekal, Mona Kessel, Lynn Kistler, Brian Larsen, Xinlin Li, Wen Li, Ian Mann, Hiroshi Matsui, Barry Mauk, Liz MacDonald, Binbin Ni, Jon Niehof, Paul O'Brien, Terry Onsager, Geoff Reeves, Randy Reukauf, Jim Roeder, Ruth Skoug, Sonya Smith, Harlan Spence, Michelle Thomsen, Richard Thorne, Weichao Tu, and Jichun Zhang

We would also like to acknowledge the MagEIS development team:

M. P. Zakrzewski, G. A. Sorensen, D. J. Salvaggio, J. L. Roeder, M. T. Redding, M. A. Perez, C. Q. Nguyen, B. McCarthy, D. J. Mabry, M. D. Looper, A. Y. Lin, M. Lalic, J. S. George, R. M. Galvan, F. H. Fuentes, Y. Dotan, W. R. Crain, Jr., S. G. Claudepierre, and P. A. Carranza.

Backup

Radial Transport in the Radiation Belts

Why does radial diffusion work?

- 1) Radial diffusion (incoherent scattering in *L*).
- 2) Impulsive events (nightside dipolarizations/injections; dayside compressions/pressure pulses).
- **3)** Drift-resonance with monochromatic ULF waves.

How do we represent radial transport in models?

- Radial diffusion models have consistently proven to be a good description of electron belts.
- Recent test-particle simulations have shown that this is true only when averaged over long times (e.g. multiple storms).
- Superposition of many instances of 2) and/or 3) could produce radial diffusion for individual storms/events.

15 realizations of radial transport. Average over all 15 realizations. Prediction from pure diffusion.

MagEIS Anomaly Status Electron pixel rates nominal

MagEIS instruments have shown no increase in baseline count rates

Van Allen Probes Trending Review June 12, 2014

Slide 8

Front proton detector in both S/C A and B High has degraded with time

Van Allen Probes Trending Review June 12, 2014

Slide 9